


Building a Robust Clean Electricity System:
Maximizing Co-Benefits of Power Decarbonization
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* Achieving deep decarbonization depends strongly on electrification of energy end-
uses and meeting those electricity demands with zero-carbon electricity resources.

* Areliable zero-carbon electric grid, however, can take a multiplicity of different
forms with regard to resource mix and infrastructure requirements.

* These different forms can vary widely in their impacts to non-carbon
environmental, health, and social outcomes.

* These must be understood to build a durable transition to a clean electricity system.
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Techmcal Approach

Model how different realizations of a deeply decarbonized electricity system
perform on non-carbon environmental, health, and social metrics

* Account for the technical & operational needs of the grid and feedbacks between
electricity and other resource sectors
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Potential Impact

* Decarbonized electricity systems that also maximize non-carbon co-benefits will
minimize unintended consequences and enable larger social and political support
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Motivation Technological Approach

* Address grid stability challenges related to * Energy management algorithms
renewables and electrification « Optimal estimation and control
“ *  Realize firm and dispatchable electricity «  Utilization of real-time information and computation
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Iryna Zenyuk

Chemical and
Biomolecular
Engineering

! Motivation

* Difficult to decarbonize sectors, such as long-
duration grid energy storage, heavy-duty trucks,
ships & chemical manufacturing (cement)

* Electrochemical technologies that are based on
electrolyzers have potential to fill in this gap
Hydrogen as a clean fuel for transportation and
chemical manufacturing
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Technological Approach

* Design of novel materials, integration into actual
devices and scale up

* Advanced characterization using synchrotron x-rays

Activity, durability and cost all need to be balanced

Advancing manufacturing technologies through

fundamentals

Potential Impact

* Net-zero emissions energy
systems that are difficult to
decarbonize

Electrolyzers
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* Long-duration, seasonal
energy storage;
 Heavy-duty trucks

Electrolyzer: l
PI Zenyuk

Value added
electrification; Water products
 (Clean cement W T—
manufacturing
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ﬁl&.« £ Combustion and Emission Control Technologies

Advanced Combustion & Emissions Lab

Objectlve. Reduce pollutant emissions from stationary and mobile sources by developing novel
materials while trying to understand the combustion chemistry at a fundamental level

Utilization of Carbon-free Fuels in Carbon Capture and Storage hter ad
Combustion Processes: Technologies: Mechanical &Aerospace
Engineering

Flue Gas
Processing/Cooling
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Compression »[_CO, Storage

Oxy-combustion

Recycled

Adding renewable H, and NH; to natural

Stationary power systems Combustionin O,  &™ | (e
Gas-fired utility boilers rather than air e
Gas turbines Results in reduction of
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Reactor

Combustion of fuel by metal oxide
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Transportation
Medium/heavy-duty reduction instead of direct oxidation (iiated ai)
vehicles Wlthma}lr

Fuel
" Reactor

Ocean going vessels

Residential and commercial appliances
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Heterogenous Catalysis for Net-Zero Carbon Reduction

/ Motivation : Develop sustainable technologies to decarbonize the transport and manufacturing sectors

, CO;reduction to value- Control of Methane Emissions Biogas Conversion Conversion and
added chemicals Sustainable Hydrogen Production
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Biomolecular  Pt-Ni single atom alloy catalysts
Engineering
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« Minimized coke formation Observation * Direct use of renewable sources for

energy production
* Up to 90% energy efficiency
* Instantaneous on/off switching

U CI oo ' * Elimination of hot-spots
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Prediction

* Enhanced oxygen transfer
* Improved reaction Kinetics
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New materials and advanced
manufacturing for small nuclear
reactors, and nuclear waste storage
(DOE NEUP & NEET)

UCI
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Sustainability
Indicators

Environmental

* Energy Consumption
» Material Resources
* Land Use

* Emissions

» Solid Waste

* Ecological Health

(NSF, ARPA-E, CEC)

Economic Social

* Project Costs * Human Health

* Pollution Costs * Travel

* Vehicle Repair Accidents
Costs * Repair

* Personal & Freight ~ Congestion
Costs * Noise

Assess how new technologies impact system sustainability




Nuclear Energy towards zero-Carbon Emission

High energy density of nuclear fuel: 20% of U.S. electricity

r .~ Perpetual improvements of operating reactor fleet
Sarah Finkel déi (efficiency & safety)
Department of Design of advanced reactor systems:

Chemistry e Small modular reactors
e Advanced fuel forms

U0, pellets

Finkeldei Lab @UCI

. U0, spheres : > Advanced fuels by
d e_% tunable structures

Impact:

 Diminish reliance on fossil fuels/zero
carbon emission

 Hydrogen production
* Advanced nuclear waste management
* Uranium extraction from seawater

novel synthesis routes

Harvesting U from the ocean s ==




Panel Discussion: Focus on Early Career & Decarbonization

NASEM Accelerating Decarbonization of the US
Energy System Goals to Reach by 2030:

Fair, equitable energy transition
Replace retiring infrastructure

Producing carbon-free electricity

Electrifying energy services in transportation,
buildings and industry

Investing in energy efficiency and productivity
Planning, permitting and building critical
infrastructure

Expanding the innovation toolkit
Strengthening the US economy

Promoting equity and inclusion

Supporting communities, businesses, & workers
Maximizing cost-effectiveness

Urgency for
Decarbonization

—r * ¢
UCI

50 % reduction in greenhouse-gas emissions by 2030 from
where we were in 2005

Pacala presentation, 2021
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Early career Late career

How to balance the “life plan” advise: work to become
the best possible scientist for the first stage of their life
before transitioning to deliver on the “social contract” with

the urgency for action »




