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Laboratory for Electron & X- Surface Science Facility Center for Transmission TEMPR Facility for Soft
ray Instrumentation (LEXI) (SSF) Electron Microscopy (CTEM) Materials Characterization
Magellan 400 SEM  GAIA-3 GMH FIB-SEM AXIS Supra by Kratos Analytical NION HERMES ~ Grand ARM  CryoTEM 2100F

A cross-disciplinary institute offering world-class facilities to researchers engaged in the discovery,
development and commercialization of all types of materials.

* Direct imaging of single atoms, 3D atomic structure, chemical
bonds, and local electronic properties

 In situ observation of the phase transition and dynamic
behaviors of materials under different conditions and
environments with the atomic resolution.

* The unique Nion UltraSTEM HERMES200 is an ideal
microscopy for the study of 2D materials.

* The world record energy resolution (4.2 meV) allows one to
measure the molecular vibration and phonons in crystal.



Why Additive / Metal Manufacturing

Metal
Additive
Manufacturing
Genome

UCI expertise in:

o Metal processing

o Machine learning

o Big data

o Sensors and control

Research Center on:
Novel Materials, Processes
and Tools for Additive
Manufacturing

Architected materials
Scalable nano-manufacturing
Metal AM

Optimal design for AM

Scalable
Nanomanufacturing



Laser Powder Bed Fusion: Shell-based PH steel metamaterials
L. Valdevit, D. Apelian (UCI), M. Begley (UCSB), A. Asadpoure, M. Tootkaboni (UMass Dartmouth)



Direct Energy Deposition - Processing Science of Functionally graded materials
J. Schoenung, L. Valdevit, P. Cao

Image courtesy of Optomec



Cold Spray for Large Area Additive Manufacturing
D. Apelian, L. Valdevit, D. R. Mumm

Gas atomization | Powder characterization
Powder Exposure [ - Microstructural
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Wire Arc Additive Manufacturing (WAAM)

D. Apelian

As-built sample

17 N cylinder-
shaped hammer

55 N cylinder-
shaped hammer

55N
parallelepiped-
shaped hammer

With
shielding gas

Deposition direction

Without
shielding gas

Advanced Casting
D. Apelian

Audi RS 7 Sportback Audi

Lightweight components
0713 MMI 3G Use of high-end steel Aluminum
system integration grades in occupant cell, boot lid
incl. form-hardened steel
and tailored blanks

Aluminum
castings

Aluminum modular cross-member-

Optimised weight-saving on.
engine and transmission

- functional integration

use of lightweight materials
(AL, Mg)

Cast aluminum
suspension strut dome

Aluminum
bonnet

Lightweight
aluminum wheels

Aluminum doors

Neodym loudspeaker

Aluminum
bumper system Aluminum side panels
Aluminum Optimised weight-savings
cables on quattro driveline
Aluminum Lightweight composite-
axle components cast brake discs

Thixotropic Casting

ACRC Consortium
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Funded by National Science Foundation
Premier Center Program in MISE

Total MRSECs Nationwide: 19 . . . . .
IRG 1 — Complex Concentrated Materials IRG 2 — Bioinspired Active Materials

Director: Professor Xiaoging Pan

Participants:
19 Faculty
25 Junior Research Fellows

Materials Research Science and Engineering Centers (MRSECs) support interdisciplinary and multidisciplinary materials
research and education of the highest quality while addressing fundamental problems in science and engineering that are

important to society.

https://ccam.uci.edu/
https://www.mrsec.org/mrsec-program-overview



Conventional Alloy: High Entropy Alloys:
Dilute Solid Solution Disordered Solid Solution
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Tim Rupert Diran Apelian Julie Schoenung Penghui Cao



. . ) Amorphous complexions
Bulk Al alloys with hierarchical nanostructures

I. Rupert

Nanorod precipitates

O

Optimal balance of small
grain size and high density

can be achieved with
interfacial design. Alloys are stronger than

all previously reported
bulk nano- and micro-
structured Al alloys









* Synthesis — Structure - Function (mechanical, optical, thermal) analysis of biological materials David Kisailus

* Biomimetic Synthesis of Impact, Abrasion, Thermal Resistant Multifunctional Materials

* Low temperature, Bio-mediated / inspired syntheses of nanomaterials for energy and environmental applications

ﬁ

/

. i . ) ) Multifunctional nanofibers:
Enzyme driven synthesis Self-cleaning, adaptive membranes Fast charging 3D batteries Impact & abrasion resistant coatings

Gas sensing, catalysis



/ Mechanical micro/nano- \
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\ / Lorenzo Valdevit P. Cao R. Bostanabad




Multi-stable architected materials
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Novel tensegrity lattice designs for robustness
(in collaboration with J. Rimoli, GaTech)

Polymer Plate-Microlattice

B e

Carbon Nanoshell

Fiber Composite

Elementary Cell

f\.‘P

~ Experiment

Metamateriol




LANL TEAM
Saryu Fensin

Abigail Hunter
L. Valdevit P. Cao R. Bostanabad



Nano-architected ceramic materials with superior mechanical properties
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Nanophotonic devices: Shcherbakov lab

Maxim Shcherbakov Filippo Capolino
Howard Lee Odzal Boyraz
Daryl Preece Dmitry Fishman

And others!



Extreme light-matter interaction, optical metasurfaces and metamaterials, tunable optical materials,
quantum/bio-photonics, and photonic applications at nanometer scale

Active optical metasurfaces Novel optical materials
|conventiona| Iens| [tunable metasurfaces
Smm < 190nm Howard Lee
Member of
Beckman
Laser
Institute
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Concentrated efforts in:
* Quantum materials and rare-earth metals
* Theory of quantum systems, especially for

correlated systems and rare earth-containing
materials




Edd/eman Quantum Institute Faculty Faculty from both School of Engineering

and School of Physical Sciences



Luis A. Jauregui
Electrical and optical properties of van der
Waals quantum materials and devices.

Growth of high-quality topological quantum materials:

ErMngSng

2 mm 1mm

Quantum optoelectronic devices

Acoustic control of excitons: Thin topological field effect devices:

Funded by NSF In collaboration with: Michael Pettes from LANL

Javier Sanchez-Yamagishi

New measurement and fabrication
techniques for quantum materials

In-situ nanomanipulation of van der Waals heterostructures

Squeeze-grown 2D topological materials

10um

Bi

hBN 1um

ultrathin and atomically flat bismuth
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“Artificially Intelligent” Transmission Electron Microscopy (TEM)

( .
ADF-STEM Deep learning

micrograph of Co;0, recons_tructlon of
atomic column

Huolin Xin

Overcoming the limitations of
conventional TEM and electron
tomography through deep

learning
WBP SART
Au .
nanorod \\\
image
Au
nanorod
FFT

R. Lin, et al., Sci Rep. 2021; G. Ding, et al., Sci Rep. 2019

Chemistry-informed machine learning (ML)

DNA-stabilized silver nanoclusters as sequence-encoded
materials for quantum plasmonics, sensing, and bioimaging

1000
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o _
Y 2 Stacy Copp
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500 | )
T T T 1
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( N\ 4 . . )
1. High-throughput 2. Chemistry-defined classes
experiments 150 Red
@ 100 |
N o Very red
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6. Prediction of Agy- 4. Supervised ML 3. Chemistry-informed
DNA templates Rigorous subsampling feature engineering

| addresses class imbalance

5. Feature analysis:

4
learned chemistry @l er—
J

S. Copp, et al., Chem. Mater. 2020; P. Mastracco, et al., In prep.



Deep learning enabled mechanotyping

Harnessing supervised and unsupervised machine learning to identify cell types
by mechanical property differences

Combs, et al. Bioarxiv 2021

Zuzanna Siwy

HL60d

HL60N

Fingerprinting vibrational spectra of bacterial metabolites

Surface enhanced Raman
scattering sensors with controlled
nanogap chemistry produce
rapid, sensitive, and reproducible
data for ML analysis.

100

80
o

S 60
Rapid Antimicrobial Susceptibility Tests
>

Latent space representations provide = 40

mechanistic insights 20

0O 5 10 20 40min O
Predicted Label

Thrift, et al. ACS Nano 2017
Thrift, et al. ACS Nano 2020 Regina Ragan  Allon Hochbaum
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Life exists far from equilibrium — why not synthetic materials?

Out of equilibrium materials in biology

Energy-dissipating

tubulin assembly Vision: Develop supramolecular
materials that mimic biological
-~ function and interface with

biological systems.

\/

Essential Cell Biology, 4" Ed.
2. In situ TEM and spectroscopy

and molecular modeling

1. Reaction networks for

MRSEC Interdisciplinary Research Group 2:
Bioinspired Active Materials

Ragan

. . Guan Hochbaum
actively assembling
conductive materials
3. First-principles and ML Wu
models for emergent
electronic and structural Sharifzadeh, B | |
ASST PROF Wickramasinghe

properties

Tobias

Patterson C
ASST PROF opp
ASST PROF



/ Electricity Fueled Dissipative Assembly Platform \ / Conductive Supramolecular Peptide Fibers \
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Guan
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Guan, Ragan, Patterson, Hochbaum, et. al. in review; Ing, et al., ACS Nano 2018




Surface enhanced Raman
spectroscopy and photo-induced Characterizing complex,

force microscopy (PiFM) out-of-equilibrium soft
matter systems

CryoEM and in situ TEM

Patterson

Multi-scale molecular dynamics
modeling of supramolecular
assembly

Tobias

Wickramasinghe D E N S

solutions

Ragan

Thirft, Hochbaum, Ragan et al, ACS Nano, 2017, 11, 11317; Rajaei, Wickramasinghe et al, Opt Expr, 2018, 26, 26365; Wong, Tobias et al, Biochemistry, 2019, 58, 3691;
laniro, Patterson et al, Nature Chem, 2019, 11, 320.



Electronic structure of supramolecular DFT informs state-coupling in Machine learning-enabled

peptide assemblies through all atom hopping charge transport study and design
MD-DFT calculations conduction model
Physical
Insights
Machine
Learning

Experiments
VR

Informed
Desigz Physical
- Insights

Self-assembling Metal-enhanced
conductive peptide fibers DNA nanowires
==

Sharifzadeh, BU Wu Copp
PDB: 5EQJ, Hochbaum e ASST PROF ASST PROF

v




Molecular design of functional soft materials for biointerfacing Programmable living functionality within soft materials

Probing Biological Processes Driving Biological Processes

Synthetic Biology

!

Macromolecular
engineering
Polymer-Assisted Patterning of
Optoelectronic Peptides (with A. Yee)

Herdeline Ardoiia Seunghyun Sim



Synthetic hydrogel copolymers engineered with antibody-like affinity and selectivity for biological
macromolecules.

e

Biology’s antibodies Synthetic hydrogels
Ken Shea
Anti-toxin Targeting bacterial proteins
Cy7-mellitin tracking Kd =15nM Bacillus thuringiensis
J. Am. Chem. Soc. 2010, 132, 13648 - 13650. Cry1Ab g Kd =26 pM

Proc. Nat. Acad. Sci. 2012, 109, 33-38.
Nature Protocols, 2015, 10, 595-604

Nature Com, 2021, 12, doi.org/10.1038/s41467-021-25847-2 J. Am. Chem. Soc. 2018, 140, 6853-6864.



Vojislav Stamenkovic
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Electrochemical Technologies Readiness Level

TRL: Batteries >> Fuel Cells >> Electrolyzers

Transportation
Li-ion BATTERIES Now H, FUEL CELLS




Electrochemical Technologies
Fuel Cells | Electrolyzers | Batteries

electrons flow through a circuit generating direct electric current

Li Battery .
electrons Charging
current

e-
Electrolyte

e

e

e Discharging
€ current

Current
collector

Cathode

Current Cathode
Electrolyte/Membrane Separator



Electrochemical Technologies: Common Denominator

ELECTROCHEMICAL INTERFACES




ELECTROCHEMICAL INTERFACES:

RESEARCH TOPICS

1. ACTIVITY GAIN FROM SOLID PHASE
2. TUNING OF THE DOUBLE LAYER

3. STABILITY OF INTERFACES



ELECTROCHEMICAL INTERFACES BY DESIGN

a)

1. Ultra High Vacuum & Surface Science Approach

d)

Electrochemical Interfaces @ Play







Desigh @ Atomic Scale

| AN

100 nm

L 10nm |

Larger terraces lead to higher reaction rate for ORR: improvement factor 100




Design @ Atomic Scale: natfure of active sites



Durability @ Atomic Scale

RDE-ICP/MS

REFERENCE
Nature Materials 19 (2020) 1207-1214



NATURE of active sites: Dynamic stability for OER

alkaline electrolytes
a) b)

The strong interaction between
Fe and TMO,H, is the key to control
the average number of Fe active
sites present at the interface

The Fe-M adsorption energy is a
reaction descriptor that unifies OER

on 3d TM hydr(oxy)oxides, and
extends the design rules for active
and stable electrochemical interfaces

Resolved the nature of active

sites and mechanism for OER

through the balanced Fe

dissolu_tion and redeposition over

TM-oxide REFERENCE

a) Isotope exchange between the electrode (°®Fe) and electrolyte (°’Fe) by ICP-MS
b) Schematic of the dynamic stable Fe active site during OER in alkaline electrolyte Nature Energy 5 (2020) 222



ul Electrochemical Technologies are Complementary

Batteries -- Fuel Cells -- Electrolyzers




Horiba Institute for Mobility and Connectivity?



Horiba Institute for Mobility and Connectivity?

Li-Battery Stack

53/18






