Slippery Diffusion Limited Aggregation of Attractive Nanodroplets
ChEMS Seminar
Featuring Thomas G. Mason, Ph.D.
Assistant Professor and John McTague Chair
Department of Chemistry and Biochemistry;
Department of Physics and Astronomy
Location: CS 174
*Refreshments will be served after seminar
ABSTRACT:
Nanoemulsions are metastable emulsions of nanoscale droplets formed by rupturing larger droplets into smaller droplets using extreme shear. Once formed, a surfactant prevents coalescence of the emulsion, yielding a long-lived dispersion of liquid droplets. Using time-resolved small angle neutron scattering, we have measured the structure factor of monodisperse silicone oil-in-water nanoemulsions that aggregate and gel after we suddenly turn on a strong, short-range, slippery attraction between the droplets. At higher scattering angles, peaks in the structure factor appear as dense clusters of droplets form initially. By contrast, toward lower angles, the structure factor increases rapidly, as these dense clusters become locked into a rigid gel network, despite the fluidity of the films between the droplets. The long-time structure of nanoemulsion gels formed by slippery diffusion limited cluster aggregation is universal in shape and remarkably independent of the droplet volume fraction. We call this new aggregation paradigm, "Slippery Diffusion Limited Aggregation" and show how it differs from other classic aggregation schemes, such as simple diffusion limited aggregation and reaction limited aggregation.
ABOUT THE SPEAKER:
Professor Mason received his Ph.D. in Physics from
Share
Upcoming Events
-
MSE 298 Seminar: Intelligent Learning Strategies for Thermal Science in the AI Era
-
CBE 298: Development and Understanding of New Concept Catalytic Materials for Environmental Applications
-
CEE Ph.D. Defense Announcement: Tracking COVID-19 in Low Population Communities through Wastewater Surveillance
-
CEE Seminar: Uncertainty in the Vulnerability of Metro Transit Networks - A Global Perspective on Infrastructure Resilience
-
UCI CEE FALL MIXER - 2025